K-moduli of Fano varieties
Chenyang Xu (MIT)
Abstract: One main theme of the algebraic K-stability theory of Fano varieties is to use it to construct moduli spaces of Fano varieties. This has once been beyond algebraic geometers’ imagination, but K-stability is proven to give the right framework. By now except the properness, all other main ingredients have essentially been established, based on the recent development of our understanding of K-stability theory and other inputs. In this talk, we will give an outline of the construction, with the focus on the essential role that the new characterisation of K-stability plays, and its connection to minimal model program theory.
algebraic geometry
Audience: researchers in the topic
Stanford algebraic geometry seminar
Series comments: The seminar was online for a significant period of time, but for now is solely in person. More seminar information (including slides and videos, when available): agstanford.com
| Organizer: | Ravi Vakil* |
| *contact for this listing |
